Mathematics in Lean
1. Introduction
2. Basics
3. Logic
4. Sets and Functions
5. Elementary Number Theory
6. Discrete Mathematics
7. Structures
8. Hierarchies
9. Groups and Rings
10. Linear algebra
11. Topology
12. Differential Calculus
13. Integration and Measure Theory
Index
Mathematics in Lean
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
A
abel
apply
,
[1]
assumption
B
by_contra
C
calc
cases
change
check
command
open
commands
check
commutative ring
congr
constructor
continuity
contrapose
convert
D
definitional equality
differential calculus
divisibility
dsimp
E
elementary calculus
exact
,
[1]
exponential
ext
extensionality
F
field_simp
Filter
from
G
gcd
goal
group (algebraic structure)
(tactic)
H
have
,
[1]
I
implicit argument
inequalities
integration
,
[1]
intro
L
lambda abstraction
lcm
left
linarith
linear map
local context
logarithm
M
matrices
max
measure theory
metric space
min
monoid
monotone function
N
namespace
norm_num
normed space
O
open
P
proof state
push_neg
R
rcases
real numbers
reflexivity
rewrite
rfl
right
ring (algebraic structure)
,
[1]
rintro
rw
,
[1]
S
set operations
simp
T
tactics
abel
apply
,
[1]
assumption
by_contra and by_contradiction
calc
cases
change
congr
constructor
continuity
contrapose
convert
dsimp
exact
,
[1]
ext
field_simp
from
group
have
,
[1]
intro
left
linarith
norm_num
push_neg
rcases
refl and reflexivity
right
rintro
rw and rewrite
,
[1]
simp
use
this
topological space
topology
U
use
V
vector space
vector subspace