Mathematics in Lean
  • 1. Introduction
  • 2. Basics
  • 3. Logic
  • 4. Sets and Functions
  • 5. Elementary Number Theory
  • 6. Discrete Mathematics
  • 7. Structures
  • 8. Hierarchies
  • 9. Groups and Rings
  • 10. Linear algebra
  • 11. Topology
  • 12. Differential Calculus
  • 13. Integration and Measure Theory
  • Index
Mathematics in Lean
  • Index

Index

A | B | C | D | E | F | G | H | I | L | M | N | O | P | R | S | T | U | V

A

  • abel
  • apply, [1]
  • assumption

B

  • by_contra

C

  • calc
  • cases
  • change
  • check
  • command
    • open
  • commands
    • check
  • commutative ring
  • congr
  • constructor
  • continuity
  • contrapose
  • convert

D

  • definitional equality
  • differential calculus
  • divisibility
  • dsimp

E

  • elementary calculus
  • exact, [1]
  • exponential
  • ext
  • extensionality

F

  • field_simp
  • Filter
  • from

G

  • gcd
  • goal
  • group (algebraic structure)
    • (tactic)

H

  • have, [1]

I

  • implicit argument
  • inequalities
  • integration, [1]
  • intro

L

  • lambda abstraction
  • lcm
  • left
  • linarith
  • linear map
  • local context
  • logarithm

M

  • matrices
  • max
  • measure theory
  • metric space
  • min
  • monoid
  • monotone function

N

  • namespace
  • norm_num
  • normed space

O

  • open

P

  • proof state
  • push_neg

R

  • rcases
  • real numbers
  • reflexivity
  • rewrite
  • rfl
  • right
  • ring (algebraic structure), [1]
  • rintro
  • rw, [1]

S

  • set operations
  • simp

T

  • tactics
    • abel
    • apply, [1]
    • assumption
    • by_contra and by_contradiction
    • calc
    • cases
    • change
    • congr
    • constructor
    • continuity
    • contrapose
    • convert
    • dsimp
    • exact, [1]
    • ext
    • field_simp
    • from
    • group
    • have, [1]
    • intro
    • left
    • linarith
    • norm_num
    • push_neg
    • rcases
    • refl and reflexivity
    • right
    • rintro
    • rw and rewrite, [1]
    • simp
    • use
  • this
  • topological space
  • topology

U

  • use

V

  • vector space
  • vector subspace

© Copyright 2020-2025, Jeremy Avigad, Patrick Massot. Modified, simplified, annotated by Wuyang Chen. Text licensed under CC BY 4.0.

Built with Sphinx using a theme provided by Read the Docs.