* denotes the author to be a DeLTA student or Dr. Chen's mentee. # denotes equal contributions.

Journal Paper

  • W. Chen#, X. Gong#, J. Wu#, Y. Wei, H. Shi, Z. Yan, Y. Yang, Z. Wang
    “Understanding and Accelerating Neural Architecture Search with Training-Free and Theory-Grounded Metrics”
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023. [Paper] [Code]

  • (α-β) T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, W. Yin
    “Learning to Optimize: A Primer and A Benchmark”
    Journal of Machine Learning Research (JMLR), 2022. [Paper] [Code]

  • C. Li, W. Chen, Y. Gu, T. Chen, Y. Fu, Z. Wang, Y. Lin
    “DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference”
    ACM Transactions on Design Automation of Embedded Systems (TODAES), 2021. [Paper]

Conference Paper & Workshop Presentation

  • W. Chen#, J. Song#*, P. Ren, S. Subramanian, D. Morozov, MW. Mahoney
    “Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning”
    NeurIPS 2024. [Paper]

  • J. Wu*, W. Huang, M. Bai, X. Hu, Y. Duan, W. Chen
    “Training-free Design of Augmentations with Data-centric Principles”
    ICML 2024 Workshop AI4Science, 2024. [Paper]

  • J. Xu*, W. Chen, Y. Zhao, Y. Wei
    “Transferable and Principled Efficiency for Open-Vocabulary Segmentation”
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [Paper] [Code]

  • W. Chen, J. Wu, Z. Wang, B. Hanin
    “Principled Architecture-aware Scaling of Hyperparameters”
    International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]

  • S. Shen, L. Hou, Y. Zhou, N. Du, S. Longpre, J. Wei, H. Chung, B. Zoph, W. Fedus, X. Chen, T. Vu, Y. Wu, W. Chen, A. Webson, Y. Li, V. Zhao, H. Yu, K. Keutzer, T. Darrell, D. Zhou
    “Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models”
    International Conference on Learning Representations (ICLR), 2024. [Paper]

  • W. Chen#, W. Huang#, and Z. Wang
    “No Free Lunch in Neural Architectures? A Joint Analysis of Expressivity, Convergence, and Generalization”
    International Conference on Automated Machine Learning (AutoML-Conf), 2023. [Paper] [Code]

  • W. Chen, Y. Zhou, N. Du, Y. Huang, J. Laudon, Z. Chen, C. Cu
    “Lifelong Language Pretraining with Distribution-Specialized Experts”
    International Conference on Machine Learning (ICML), 2023. [Paper]

  • Y. Zhang, A. Kamath, Q. Wu, Z. Fan, W. Chen, Z. Wang, S. Chang, S. Liu, C. Hao
    “Data-Model-Circuit Tri-design for Ultra-light Video Intelligence on Edge Devices”
    IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), 2022 [Paper]

  • W. Chen#, W. Huang#, X. Gong, B. Hanin, Z. Wang
    “Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis”
    Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]

  • W. Chen, X. Du, F. Yang, L. Beyer, X. Zhai, T. Lin, H. Chen, J. Li, X. Song, Z. Wang, D. Zhou
    “A Simple Single-Scale Vision Transformer for Object Localization and Instance Segmentation”
    European Conference on Computer Vision (ECCV), 2022. [Paper]

  • X. Gong, W. Chen, T. Chen, Z. Wang
    Sandwich Batch Normalization: A Drop-In Replacement for Feature Distribution Heterogeneity
    IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022. [Paper] [Code]

  • M. Lu, X. Luo, T. Chen, W. Chen, D. Liu, Z. Wang
    “Learning Pruning-Friendly Networks via Frank-Wolfe: One-Shot, Any-Sparsity, And No Retraining”
    International Conference on Learning Representations (ICLR), 2022. (Spotlight) [Paper] [Code]

  • W. Chen, W. Huang, X. Du, X. Song, Z. Wang, D. Zhou
    “Auto-Scaling Vision Transformers without Training”
    International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]

  • W. Chen, X. Gong, Z. Wang
    “Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective”
    International Conference on Learning Representations (ICLR), 2021. [Paper] [Code] [NSF News] [UT ECE News] [Project Webpage]

  • W. Chen, Z. Yu, S. Mello, S. Liu, J. Alvarez, Z. Wang, A. Anandkumar
    “Contrastive Syn-to-Real Generalization”
    International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]

  • W. Chen, Z. Yu, Z. Wang, A. Anandkumar
    “Automated Synthetic-to-Real Generalization”
    International Conference on Machine Learning (ICML), 2020. [Paper] [Code]

  • X. Chen#, W. Chen#, T. Chen, Y. Yuan, C. Gong, K. Chen, Z. Wang
    “Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training”
    International Conference on Machine Learning (ICML), 2020. [Paper] [Code]

  • Y. Fu, W. Chen, H. Wang, H. Li, Y. Lin, Z. Wang
    “AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks”
    International Conference on Machine Learning (ICML), 2020. [Paper] [Code]

  • W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, Z. Wang
    “FasterSeg: Searching for Faster Real-time Semantic Segmentation”
    International Conference on Learning Representations (ICLR), 2020. [Paper] [Code]

  • Y. Yuan, W. Chen, Y. Yang, Z. Wang
    “In Defense of the Triplet Loss Again: Learning Robust Person Re-Identification With Fast Approximated Triplet Loss and Label Distillation”
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020. [Paper] [Code]

  • Y. Yuan, W. Chen, T. Chen, Y. Yang, Z. Ren, Z. Wang, G. Hua
    “Calibrated Domain-Invariant Learning for Highly Generalizable Large Scale Re-Identification”
    IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2020. [Paper] [Code]

  • T. Chen, S. Ding, J. Xie, Y. Yuan, W. Chen, Y. Yang, Z. Ren, Z. Wang
    “ABD-Net: Attentive but Diverse Person Re-Identification”
    IEEE International Conference on Computer Vision (ICCV), 2019. [Paper] [Code]

  • W. Chen#, Z. Jiang#, Z. Wang, K. Cui, X. Qian
    “Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-high Resolution Images”
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. (Oral) [Paper] [Code]

Preprint

  • T. Wu, W. Chen, Z. Zhang
    “Training-free Design of Deep Networks as Ensembles of Clinical Experts”
    medRxiv, 2024.03. 17.24304438 [Paper]